

Improved Multilevel Feedback Queue Scheduling

Using Dynamic Time Quantum and Its Performance
Analysis

H.S. Behera, Reena Kumari Naik, Suchilagna Parida

Department of Computer Science and Engineering, Veer Surendra Sai University of Technology (VSSUT)
Burla, Sambalpur, 768018, Odisha,, India

Abstract—Multilevel feedback queue scheduling algorithm allows
a process which is entering to the system to move between several
queues. Here, the processes initially does not come with any
priority but during scheduling the processes according to their
CPU burst time may be shifted to the lower level queues. Here an
effective dynamic time slice is used to schedule the processes. As
a result we found reduction in turnaround time, average waiting
time and better throughput as compared to the previous
approaches and hence increase in the overall performance. A
control flow diagram is used to describe the sequence of flow of
control of the processes with different conditional statements,
repetition of the flow structures and case conditions. The
algorithm is proposed in such a way that it reduces the starvation
of the long processes. An entering process is inserted into the top
level queue. When selected, processes in the queue are allocated a
relatively small time slice. Upon expiration of time slice the
process is moved to lower level queue.

Keywords— CPU burst time, turnaround time,waiting
time,throughputs, dynamic time quantum,shifting to lower
queues, RR scheduling algorithm.

I. INTRODUCTION

Scheduling is a process of deciding how to allocate resources
between different possible tasks. Various types of scheduling
algorithms are there such as FCFS, SJF, SRTN, RR etc. In
FCFS scheduling algorithm, processes are allowed to get the
CPU time according to their arrival time on the ready queue. It
is a non-pre emptive algorithm where if a process has a CPU
then it runs to completion. SJF scheduling algorithm, the
available CPU is assigned to the process that has smallest next
CPU burst. In SRTN scheduling algorithm, the scheduler
dispatches that ready process which has the shortest expected
remaining time to completion. RR scheduling algorithm is the
best and most widely used algorithm where the fair share CPU
time assigned to the processes based on FCFS basis.
Multilevel queue partitions the ready queue into several
queues, where the processes are permanently assigned to one
queue. The processes cannot move between queues. In
multilevel feedback queue all the processes entering into the
system are assigned to the first queue. Here the processes in

the first queue are scheduled according to the CPU burst time
and time quantum selected. The process having CPU burst
more than the time quantum are shifted to the next lower level
queue. Since, the processes having higher burst time are
gradually shifted to the lower level queues so it may suffer
from starvation. In this approach, the shorter (highest priority)
processes are scheduled using RR scheduling where as the long
processes which automatically sink to the lower level queue
are served in FCFS order. Until the processes in the higher
level queue are completed the scheduler does not allow the
process to enter to the next level queue. One drawback of the
paper [4] is that the selection of the time quantum by
assumption may not perform effectively for all types of
processes. So, we have used an effective approach to find the
time quantum which results in better performance. The
architecture of MLFQ shows a dynamic reduction in
turnaround time. The overall performance of the proposed
approach is better as compared to previous approaches.

II. RELATED WORK

There are various type of approaches proposed in different
papers in order to increase the overall performance of the
multilevel feedback queue. In paper [3], a parametric
multilevel feedback queue scheduling algorithm has been used
to solve the problems related to the scheduling and
minimizing the response time of the queues. Here the priority
has also played a most important role. A very small time
quantum has been assigned to the very high priority queue and
the time slice doubles as the level of queue increases. In paper
[4], it is proposed that the processes do not come with any
priority rather it is decided during scheduling. The time
quantum assigned were gradually increasing as the priority
increases. An approach was given for the long processes that
suffer from starvation during scheduling. And also a well
organized control flow diagram was described. In paper [6],
Recurrent Neural Network (RNN) has been proposed to
optimize the quantum of each queue. The RNN gives the most
effective model for recognizing the trend information of the
time series data. RNN takes the quantum of queues and

H.S. Behera et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (2) , 2012,3801-3807

3801

average response time. Average response time enters as the
input to neural network so that the network obtains a relation
between the change of quantum of specified queue with the
average response time and with the quantum of other queues
and by a change in the quantum of specified queue.
In Paper [8], a different type of analysis has been described
which is a combination of both the best case analysis as well
as the worst case analysis. The performance is analysed in
terms of time complexity. It was also an effective method for
better performance of the multilevel feedback queue
scheduling. According to paper [10], the multilevel feedback
queue scheduling is implemented in Linux kernel. There are
many different types of approaches that have already been
developed to provide a better idea to improve the performance
of multilevel feedback queue in different platforms and by
using various methods.

III. PROPOSED APPROACH
In this approach, all the processes are inserted into the first
queue and scheduled with the given time slice. The time slices
for each queue are selected differently and it gradually
increases as the number of queue increases. The time slices
are selected based on a new method in order to minimize the
turnaround time, waiting time and hence to reduce the
starvation of the long processes. The priority of the processes
decreases while moving to the lower queues. The processes
are scheduled in the first queue using the given time slice. If it
is not completed in the current queue then enters into the next
queue. Before entering into the next lower level queue the
burst time of the processes are updated depending on the time
slice. The same procedure is repeated for all the queues which
are going to be generated. When the remaining processes
reach to the lowest queue the processes are sorted according to
their remaining CPU burst time. They are arranged in
increasing order according to their values. After that the
processes were sent to their respective queues for their total
completion. The processes were rescheduled according to the
time quantum assigned to the respective queues earlier. The
turnaround time, average waiting time and throughput are
calculated for the whole process at the end.

III.A. ARCHITECTURE
Here we have taken different types of processes so we found
different number of queues in each case. All the processes
which are going to be scheduled will enter into Q1. Once the
time quantum expires if a process is not completed then it
enters into the next level. The number of levels generated
depends upon the time quantum and burst time of the
processes. The time quanta calculated are dynamic in nature
and they vary for each queue. In the proposed architecture
there are 5 queues. The processes which are completed in any
queue leave the queue from that level. Here the processes do
not have any fixed priority when they enter into the queue.
But gradually as they are scheduled the priority is decided.
The process of scheduling in steps is shown below. Here five
queues (Q1, Q2, Q3, Q4 and Q5) are mentioned to describe the

mechanism. If the processes reach at the lowest level queue
but are not completed then those remaining processes are to
be rescheduled by sending them to the respective queues. This
procedure is repeated for the remaining processes till they are
completed.

The scheduling mechanism is shown in the below figure:

Figure 1.shows the flow of execution in different level of
queues till all the processes get executed.

In the above structure, the processes are inserted into the first
queue as input. They are executed and if completed then leave
the queue but if not completed then the remaining burst time
will enter into next level which is clearly shown in the above
diagram. This procedure is repeated up to Q5. When the
processes reach to the lower queue then the remaining burst
times were sent to the respective queue according to their
values for rescheduling purpose in order to complete the
execution.

 III.B.ALGORITHM

Here an effective way was proposed to reduce the starvation
of the processes. In the beginning of the scheduling process all
the processes are inserted into a queue and it is called as
queue1 (Q1). The process having greater burst time than the
assigned time slice goes down. The processes after being

 QUEQE 2

 QUEUE 3

 QUQUE 1

 QUEUE 4

 QUEUE 5

If
completed
Out of the
queue as
outputs

Inputs

Reschedule if
 not completed

H.S. Behera et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (2) , 2012,3801-3807

3802

scheduled in a queue are updated with the new burst time.
Here the time at which all processes have finished their
execution at one queue is the waiting time for the next queue.
When they reach to the lower level queue, the remaining
processes are rescheduled by sending them into their
respective queue according to their values.
 Here we introduced a new approach to find an optimal
time quantum. The median and mean of all the processes are
calculated using the following formula;

 Median= Y (n+1)/2, if n=odd

 1/2(Yn/2+ Y (1+n/2)), if n=even

 The formula used to calculate the time quantum is
mentioned in the pseudo code. So with the calculated time
slice the processes are scheduled.

III.C. CONTROL FLOW DIAGRAM OF THE

PROPOSED ALGORITHM

A control flow diagram (CFD) describes the sequence of flow
of control of process or program. It can consist of a
subdivision to show sequential steps, with different
conditional statements, repetitions and case conditions.

 Here we have taken 5 queues (Q1, Q2, Q3, Q4 and Q5).
If any process does not complete its execution within these
queues and reaches to the lowest queue i.e. Q5 then the
remaining processes are to be rescheduled in their respective
queues. The processes are arranged according to their
remaining CPU burst time and send them to their respective
queues. The processes are in increasing or decreasing order
and the process having minimum burst time is sent to Q1 and

 PSEUDO CODE OF THE PROPOSED
ALGORITHM:

 1. Qm: number of queue, where m represent the

 number from 1, 2, 3…..

 n=no. of processes

 Yn= position of the nth
 process

 bt [i]: burst time of ith process

 rbt [i]: remaining burst time of ith process

 tq =time quantum,

 Initialize: m=1, i=1, avg tat=0

2. Insert the processes p[i] where i=1 to n to Q1.

3. Calculate the tq

 For (m=1 to 5)

 While (ready queue! =NULL)

 {

 tq1=|Mean-Median|/3;

 tq2=2*tq1;

 tq3=2*tq2;

 }/* A recursive method is used to calculate tq

 For Q1 to Q5*/

4. Assign tq to each process in the Qm for each process

 p [i] where i=1 to n.

 P [i] ->tq

5. If (bt [i]>=tq)

 {

 Qm+1bt[i]-tq

 // rbt[i] of P[i] after the tq used is assigned to next
queue

 }

 Else Qm-> bt[i]

 /*bt[i] is used in the same queue hence process

 Expires at the same level*/

6. Calculate the waiting time for Qm+1 at each Qm.

7. If a new queue arrives

 Update the values m and n and go to step 3.

8. If (m>5) /* Here, we have considered the number
of queues as 5.*/

 {

 Arranged the rbt [i] of processes in increasing order.

 Reschedule the remaining processes in their

 respective queues according to their values.

 /* least remaining process will go to Q1 and next up
to Q5.*/

 }

 9. Calculate tat, avg waiting time & throughput at the

 end.

 10. Stop and exit.

H.S. Behera et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (2) , 2012,3801-3807

3803

next process to Q2 and in the same way processes are assigned
up to Q5 so that Q5 must get the process with highest
remaining burst time. The same procedure repeats till all the
processes have finished their execution.

 INPUTS

 SCHEDULING_QUEUE in level1(tq1)

SCHEDULING_QUEUE in level2(tq2)

 SCHEDULING_QUEUE in level3(tq3)

 SCHEDULING_QUEUE in level4(tq4)

 SCHEDULING_QUEUE in level5(tq5)

 Schedule process1

 In Q1(tq6)

 Schedule process4

 In Q4(tq6)

 Schedule process2

 In Q2(tq6) schedule process3

 In Q3(tq6)

 Schedule process In Q5 (tq6)

 SCHEDULING in level6(tq6)

 Schedule process1

 In Q1 (tq7)

 Schedule process4

 In Q4(tq7)

 Schedule process2

 In Q2(tq7)

 schedule process3

 In Q3(tq7)

 Schedule process5 In Q5 (tq7)

Figure 2.Control Flow Diagram showing the scheduling process.

The process of execution repeats till all the processes are
finished within their given burst times. Here the order of time
quanta is

 tq1 < tq2 <tq3 <tq4 <tq5 <tq6 <tq7

III.D.FLOW CHART OF THE PROPOSED ALGORITHM

 Yes

 No

 No

 Yes

 No

 Yes

Figure 3.Representing the flow of sequence of processes from
one queue to next.

Start

Input

Assigned all processes to

 While
 (m<=5)

Is Ready
queue= null?

 Tq=
| Mean- Median|/3

 P[i]tq

Is bt >tq

?

 Rbt=bt-tq
Qm tq

Qm+1 rbt

Is m>5

 ?

Sort rbt[i]

Calculate avg waiting
time, and throughput

 Exit

Calculate waiting
time of each Qm

H.S. Behera et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (2) , 2012,3801-3807

3804

IV.EXPERIMENTAL ANALYSIS

The proposed algorithm was elaborated with the following
processes. There are five processes with different arrival time
and CPU Burst time. These processes are to be scheduled
according to the given time slice for each queue. The time slice
gradually increases as the queues go down to the lower level.
We have taken different time slice for respective queues from
Q1 to Q5. The turnaround time was calculated for the whole
scheduling mechanism.

IV.A.GANTT CHART

A Gantt chart is a type of bar chart ,that illustrates a process
schedule. Gantt charts differentiate the start and finish time of
the processes in the queue . This chart also shows the
dependency (i.e., precedence network) relationships between
different queues which is shown in the Multilevel Feedback
Queue.

Following example elaborates the performance enhancing
scenario with suitable Gantt chart and result.

Table 1: TEST CASE INPUT:

(Five processes with CPU burst times and arrival times)

Processes CPU burst time Arrival time
P1 421 1
P2 551 3
P3 299 7
P4 326 8
P5 346 9

According to the proposed algorithm the time quanta are
calculated as follows for different queues;

tq1=|mean-median|/3=|389-346|/3=14
tq2=2*tq1=2*14=28
tq3=2*tq2=2*28=56
tq4=2*tq3=2*56=112
tq5=2*tq4=2*112=224
The above processes are to be scheduled through different
queues with the assigned time quantum for each queue.

The time at which the current queue completes is the waiting
time for the next queue. The first arrival time here is 1.The
scheduling process is as follows:

 The waiting time for the Q1 is T1=1;

 Queue1:-
 P1 P2 P3 P4 P5

 1 15 29 43 57 71
 The waiting time for the next queue is same as the time at
which the processes in the first queue are completed. Because
the control of execution enters into the second queue if and
only if the first queue is executed. Hence the waiting time for
Q2 is T2=71;

 Queue2:-

 P1 P2 P3 P4 P5

 71 99 127 155 183 211
 The waiting time for Q3 is T3=211;

 Queue3:-
 P1 P2 P3 P4 P5

 211 267 323 379 435 491

 The waiting time for Q4 is T4=491;

 Queue4:-

 P1 P2 P3 P4 P5

 491 603 715 827 939 1051

 The waiting time for Q5 is T5=1051;

 Queue5:-

 P1 P2 P3 P4 P5

 1051 1262 1486 1575 1691 1827
 The waiting time for Q6 isT6=1827
 When the processes reach to the lowest queue but have not
completed then the remaining CPU burst time of each process
are calculated and range the values in increasing or decreasing
order .Rescheduled the processes by sending them into their
required respective queues. The process having least burst
time is send to Q1 and the next process to Q2. In the same
manner all processes have been sent to different queues
according to their values. Q5 must have the process with
highest remaining burst time. The same procedure is repeated
till all the processes get executed.
Here in this above example P2 is only remaining with burst
time of 117 so it is sent to Q5 for completion.

 T6=1827

 Queue 5

 P2

 1827 1944

Here the turnaround time calculated by the proposed approach
is 1944nm.

Here we have taken few test cases of different CPU burst
times and arrival times which gives a comparison based on the
idea of proposed approach and other MLFQs. We have taken
5 different processes for each test case which are to be
scheduled.

H.S. Behera et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (2) , 2012,3801-3807

3805

Table 2(a): FIRST TEST CASE INPUT:
(Five processes with different arrival times and CPU burst
times)

 Table 2(b): FIRST TEST CASE OUTPUT:

algorithms
Turn

around
time

Average
waiting

time
throughput

Power MLFQ 2944 761 0.00016
EMLFQ 2736 761 0.00018

Proposed approach 2525 666 0.00019

 Table 3(a): SECOND TEST CASE INPUT:
 (Five processes with different arrival times and
 CPU burst times)
PROCESSES CPU BURST TIME ARRIVAL TIME

P1 421 1
P2 551 4
P3 299 6
P4 326 9
P4 346 10

 Table 3(b): SECOND TEST CASE OUTPUT:

 Table 4(a): THIRD TEST CASE INPUT:
(Five processes with different arrival times and CPU burst
times)

PROCESSES CPU BURST TIME ARRIVAL TIME
P1 821 1
P2 951 2
P3 699 8
P4 726 11
P5 746 14

Table 4(b): THIRD TEST CASE OUTPUT:

algorithms
Turn

around
time

Average
waiting

time
Throughput

Power MLFQ 4068 761 0.00012
EMLFQ 3969 761 0.00012

Proposed approach 3066 666 0.00016
In all the above test cases the calculated turnaround time,
average waiting time & throughput are better than previous
MLFQ papers.

III.B. PERFORMANCE ANALYSIS

Here the performance of the proposed approach was compared
with the previous papers by taking different test cases and
represented below in the form of graph. The graph shows the
turnaround time, average waiting time and throughput along
the Y-axis and the number of test cases along the X-axis. The
turnaround time, average waiting time and throughput in the
proposed algorithm are better in all the cases than previous
papers.

0
500

1000
1500
2000
2500
3000
3500
4000
4500

1ST
TEST
CASE

2ND
TEST
CASE

3RD
TEST
CASE

T
u

rn
ar

ou
n

d
 T

im
e-

--
--

>

Number of Test Cases-------->

GRAPH BETWEEN POWER MLFQ ,EMLFQ
& PROPOSED APPROACH

power
MLFQ

EMLFQ

proposed
approach

Figure 4.turnaround time of various proposed approaches
for 1st test case, 2nd test case and 3rd test case are shown.

0

100

200

300

400

500

600

700

800

1ST
TEST
CASE

2ND
TEST
CASE

3RD
TEST
CASE

A
vg
 w
ai
ti
n
g
Ti
m
e
‐‐
‐‐
‐>

Number of Test Cases-------->

GRAPH BETWEEN POWER MLFQ
,EMLFQ & PROPOSED APPROACH

power
MLFQ
EMLFQ

proposed
approach

Figure 5.Average waiting time of the queues at each level of
various proposed approaches for 1st test case, 2nd test case &

3rd test case are shown.

PROCESSES CPU BURST TIME ARRIVAL TIME
P1 621 1
P2 751 3
P3 499 6
P4 526 9
P5 546 10

Algorithms
Turnaround

time

Average
waiting

time
throughput

Power MLFQ 2535 662 0.00019
EMLFQ 2535 662 0.00019

Proposed approach 1944 608 0.00025

H.S. Behera et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (2) , 2012,3801-3807

3806

0

0.00005

0.0001

0.00015

0.0002

0.00025

0.0003

1ST
TEST
CASE

2ND
TEST
CASE

3RD
TEST
CASE

Th
ro
u
gh
p
u
t‐
‐‐
‐‐
>

Number of Test Cases‐‐‐‐‐‐‐‐>

GRAPH BETWEEN POWER MLFQ ,EMLFQ
& PROPOSED APPROACH

power
MLFQ

EMLFQ

proposed
approach

Figure 6.throughput of various proposed approaches for
 1st test case, 2nd test case and 3rd test case are shown.

V.CONCLUSION AND FUTURE WORK

 An effective study was made to assign various processes into
different queues and the flow of control was clearly
distinguished from one queue to another with the help of the
control flow diagram. The starvation of the long process is
reduced in the proposed approach.
 It was also noted that the number of queues and quantum
of each queue affect the response time directly. Hence, a
better and optimal time quantum was introduced. As a result
reduction in the turnaround time of the scheduling process in
Multilevel Feedback Queue Scheduling was achieved. The
waiting time for each queue has also been reduced. As the
turnaround time and waiting time decreases, the execution
becomes faster.
 Here we found less turnaround time , average waiting
time and throughput than the previous proposed algorithm so

we can conclude that this proposed approach shows a better
result. Hence the overall performance of the multilevel
feedback scheduling is better than the previous approaches.
 This algorithm can be used on time sharing systems and
distributed systems in an effective way that the research is still
being continued in these fields.

REFERENCES

1. Baney, Jim and Livny, Miron (2000),” Managin NetworkResources in
Condor”, 9th IEEE Proceedings of the International Symposium on High
Performance Distributed Computing, Washington, DC, USA.

2. Parvar, Mohammad R.E, Parvar, M.E. and Safari, Saeed (2008),”A
Starvation Free IMLFQ Scheduling Algorithm Based on Nueral
Network”, International Journal of Computational Intelligence Research
ISS 0973-1873 Vol.4, No.1 pp.27-36.

3. Wolski, Rich, Nurmi, Daniel and Brevik, Jhon (2007),” An Analysis of
Availability Distributions in Condor”, IEEE, University of California,
Santa Barbara.

4. Becchetti, L., Leonardi, S. and Marchetti S.A. (2006),” Average-Case
and Smoothed Competitive Analysis of the Multilevel Feedback
Algorithm” Mathematics of Operation Research Vol.31, No.1, February,
pp.85-108.

5. Litzkow, Micheal J., Linvey, Miron and Mutka, Matt W. (1988),”
Condor –A Hunter of Idle Workstations” IEEE, Department of
Computer Sciences, University of Wisconsin, Madison.

6. Abawajy, Jemal H. (2002),”Job Scheduling Policy for High Throughput
Computing Environments”, Ninth IEEE International Conferences on
Parallel and Distributed Systems, Ottawa, Ontario, Canada.

7. Liu, Chang, Zhao, Shawn and Liu, Fang (2009), “An Insight into the
architecture of Condor-a Distributed Scheduler”, IEEE, Beijing, China.

AUTHOR’S BIOGRAPHY

1. Dr. H. S. Behera is currently working as a Faculty in Dept. of
Computer Science and Engineering, Veer Surendra Sai
University of Technology (VSSUT), Burla, Sambalpur, 768018,
Odisha, India. His areas of interest include Distributed Systems,
Data Mining, and Soft Computing.

2. Reena Kumari Naik is a final year B.Tech student in Dept. of
Computer Science and Engineering, Veer Surendra Sai
University of Technology (VSSUT), Burla, Sambalpur, 768018,
Odisha, India.

3. Suchilagna Parida is a final year B.Tech student in Dept. of
Computer Science and Engineering, Veer Surendra Sai
University of Technology (VSSUT), Burla, Sambalpur, 768018,
Odisha, India.

H.S. Behera et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (2) , 2012,3801-3807

3807

